Learning from Large Distributed Data: A Scaling Down Sampling Scheme for Efficient Data Processing
نویسندگان
چکیده
منابع مشابه
Separating indexes from data: a distributed scheme for secure database outsourcing
Database outsourcing is an idea to eliminate the burden of database management from organizations. Since data is a critical asset of organizations, preserving its privacy from outside adversary and untrusted server should be warranted. In this paper, we present a distributed scheme based on storing shares of data on different servers and separating indexes from data on a distinct server. Shamir...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملLatency-aware Elastic Scaling for Distributed Data Stream Processing
Elastic scaling allows a data stream processing system to react to a dynamically changing query or event workload by automatically scaling in or out. Thereby, both unpredictable load peaks as well as underload situations can be handled. However, each scaling decision comes with a latency penalty due to the required operator movements. Therefore, in practice an elastic system might be able to im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Machine Learning and Computing
سال: 2014
ISSN: 2010-3700
DOI: 10.7763/ijmlc.2014.v4.415